Overview of Models of Carbon Allocation in Vegetation in BGC-MD

Summary of the models in the database of Carbon Allocation in Vegetation models
Structure Model # State variables Diagonal matrix? Partitioning scheme Claimed to favour a limiting compartment? Source
\(f_{v}=u\cdot \beta+B\cdot x\) Turgman2018EcologyLetters \(3\) False dynamic yes Trugman et al. (2018)
\(f_{v}=u\cdot b+A\cdot x\) CASA \(3\) True fixed no Potter et al. (1993)
\(f_{v}=u\cdot b+A_{x}\cdot x\) ACONITE \(6\) False fixed no Thomas and Williams (2014)
\(f_{v}=u\cdot b+A\cdot x\) FOREST-BGC \(3\) True fixed no Running and Coughlan (1988)
\(f_{v}=u\cdot b+A\cdot x\) DeAngelis2012TheorEcol \(5\) True fixed yes DeAngelis et al. (2011)
\(f_{v}=u\cdot b+A\cdot x\) Murty2000EcolModell \(3\) True fixed no Murty and McMurtrie (2000)
\(f_{v}=u\cdot b+A\cdot x\) CABLE \(3\) True fixed no Y. P. Wang, Law, and Pak (2010)
\(f_{v}=u\cdot b+A\cdot x\) King1993TreePhysiol \(3\) True fixed yes King (1993)
\(f_{v}=u+A\cdot x\) CTEM \(3\) True dynamic yes Arora and Boer (2005)
\(f_{v}=u\cdot b+A\cdot x\) JeDi-DGVM \(6\) False dynamic yes Pavlick et al. (2013)
\(f_{v}=u\cdot \beta+B\cdot x\) HAVANA \(3\) True dynamic yes Haverd et al. (2016)
\(f_{v}=u\cdot b+A\cdot x\) Luo2012TE \(3\) True fixed no Luo, Weng, and Yang (2012)
\(f_{v}=u\cdot b+A\cdot x\) IBIS \(3\) True dynamic no Castanho et al. (2013)
\(f_{v}=u\cdot b+A\cdot x\) G'DAY \(3\) True fixed no Comins and McMurtrie (1993)
\(f_{v}=u\cdot b+A_{x}\cdot x\) Hilbert1991AnnBot \(5\) False dynamic yes Hilbert and Reynolds (1991)
\(f_{v}=u\cdot b+A\cdot x\) DALEC \(4\) False dynamic yes M. Williams et al. (2005)
\(f_{v}=u\cdot b+A\cdot x\) IBIS \(3\) True fixed yes Foley et al. (1996)
\(f_{v}=u+A\cdot x\) ISAM \(3\) True dynamic yes Arora and Boer (2005)
\(f_{v}=u\cdot b+A\cdot x\) CEVSA2 \(3\) True dynamic yes Gu et al. (2010)

Figure 1
Figure 1: Histograms, variables

Figure 2
Figure 2: No. variables & parameters

Figure 3
Figure 3: No. variables & operations

Figure 4
Figure 4: No. variables & cascading depth of operations

Figure 5
Figure 5: No. variables & cascading depth of operations

Figure 6
Figure 6: Type of carbon partitioning scheme among pools and No. operations

Figure 7
Figure 7: Type of carbon partitioning scheme among pools and claim to have a dynamic partitionings

Figure 8
Figure 8: Number of state variables and C cycling among compartments

Figure 6
Figure 6: Dependency plots of compartment variables

Bibliography

Arora, Vivek K., and George J. Boer. 2005. “A Parameterization of Leaf Phenology for the Terrestrial Ecosystem Component of Climate Models.” Global Change Biology 11 (1). Wiley: 39–59. doi:10.1111/j.1365-2486.2004.00890.x.

Castanho, A. D. A., M. T. Coe, M. H. Costa, Y. Malhi, D. Galbraith, and C. A. Quesada. 2013. “Improving Simulated Amazon Forest Biomass and Productivity by Including Spatial Variation in Biophysical Parameters.” Biogeosciences 10 (4). Copernicus GmbH: 2255–72. doi:10.5194/bg-10-2255-2013.

Comins, H. N., and Ross E. McMurtrie. 1993. “Long-Term Response of Nutrient-Limited Forests to CO\(_2\) Enrichment; Equilibrium Behavior of Plant-Soil Models.” Ecological Applications 3 (4). Ecological Society of America: 666–81.

DeAngelis, Donald L., Shu Ju, Rongsong Liu, John P. Bryant, and Stephen A. Gourley. 2011. “Plant Allocation of Carbon to Defense as a Function of Herbivory, Light and Nutrient Availability.” Theoretical Ecology 5 (3). Springer Science and Business Media LLC: 445–56. doi:10.1007/s12080-011-0135-z.

Foley, Jonathan A., I. Colin Prentice, Navin Ramankutty, Samuel Levis, David Pollard, Steven Sitch, and Alex Haxeltine. 1996. “An Integrated Biosphere Model of Land Surface Processes, Terrestrial Carbon Balance, and Vegetation Dynamics.” Global Biogeochemical Cycles 10 (4). American Geophysical Union (AGU): 603–28. doi:10.1029/96gb02692.

Gu, Fengxue, Yuandong Zhang, Bo Tao, Qiufeng Wang, Guirui Yu, Leiming Zhang, and Kerang Li. 2010. “Modeling the Effects of Nitrogen Deposition on Carbon Budget in Two Temperate Forests.” Ecological Complexity 7 (2). Elsevier BV: 139–48. doi:10.1016/j.ecocom.2010.04.002.

Haverd, V., B. Smith, M. Raupach, P. Briggs, L. Nieradzik, J. Beringer, L. Hutley, C. M. Trudinger, and J. Cleverly. 2016. “Coupling Carbon Allocation with Leaf and Root Phenology Predicts Treegrass Partitioning Along a Savanna Rainfall Gradient.” Biogeosciences 13 (3). Copernicus GmbH: 761–79. doi:10.5194/bg-13-761-2016.

Hilbert, David W., and James F. Reynolds. 1991. “A Model Allocating Growth Among Leaf Proteins, Shoot Structure, and Root Biomass to Produce Balanced Activity.” Annals of Botany 68 (5): 417–25. http://aob.oxfordjournals.org/content/68/5/417.abstract.

King, D. A. 1993. “A Model Analysis of the Influence of Root and Foliage Allocation on Forest Production and Competition Between Trees.” Tree Physiology 12 (2). Oxford University Press (OUP): 119–35. doi:10.1093/treephys/12.2.119.

Luo, Yiqi, Ensheng Weng, and Yuanhe Yang. 2012. “Ecosystem Ecology.” Edited by Alan Hastings and Louis Gross. Berkeley: University of California Press, 219–29.

Murty, Danuse, and Ross E. McMurtrie. 2000. “The Decline of Forest Productivity as Stands Age: A Model-Based Method for Analysing Causes for the Decline.” Ecological Modelling 134 (2-3). Elsevier BV: 185–205. doi:10.1016/s0304-3800(00)00345-8.

Pavlick, R, D T Drewry, K Bohn, B Reu, and A Kleidon. 2013. “The Jena Diversity-Dynamic Global Vegetation Model (Jedi-Dgvm): A Diverse Approach to Representing Terrestrial Biogeography and Biogeochemistry Based on Plant Functional Trade-Offs.” Biogeosciences 10 (6): 4137–77. doi:10.5194/bg-10-4137-2013.

Potter, Christopher S., James T. Randerson, Christopher B. Field, Pamela A. Matson, Peter M. Vitousek, Harold A. Mooney, and Steven A. Klooster. 1993. “Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data.” Global Biogeochemical Cycles 7 (4). American Geophysical Union (AGU): 811–41. doi:10.1029/93gb02725.

Running, Steven W., and Joseph C. Coughlan. 1988. “A General Model of Forest Ecosystem Processes for Regional Applications I. Hydrologic Balance, Canopy Gas Exchange and Primary Production Processes.” Ecological Modelling 42 (2). Elsevier BV: 125–54. doi:10.1016/0304-3800(88)90112-3.

Thomas, R. Q., and M. Williams. 2014. “A Model Using Marginal Efficiency of Investment to Analyze Carbon and Nitrogen Interactions in Terrestrial Ecosystems (ACONITE Version 1).” Geoscientific Model Development 7 (5). Copernicus GmbH: 2015–37. doi:10.5194/gmd-7-2015-2014.

Trugman, A. T., M. Detto, M. K. Bartlett, D. Medvigy, W. R. L. Anderegg, C. Schwalm, B. Schaffer, and S. W. Pacala. 2018. “Tree Carbon Allocation Explains Forest Drought-Kill and Recovery Patterns.” Edited by Duncan Cameron. Ecology Letters 21 (10). Wiley: 1552–60. doi:10.1111/ele.13136.

Wang, Y. P., R. M. Law, and B. Pak. 2010. “A Global Model of Carbon, Nitrogen and Phosphorus Cycles for the Terrestrial Biosphere.” Biogeosciences 7 (7). Copernicus GmbH: 2261–82. doi:10.5194/bg-7-2261-2010.

Williams, Mathew, Paul A. Schwarz, Beverly E. Law, James Irvine, and Meredith R. Kurpius. 2005. “An Improved Analysis of Forest Carbon Dynamics Using Data Assimilation.” Global Change Biology 11 (1). Wiley: 89–105. doi:10.1111/j.1365-2486.2004.00891.x.