General Overview


Logo

This report is the result of the use of the python package bgc_md, as means to translate published models to a common language. The underlying yaml file was created by Verónika Ceballos-Núñez (Orcid ID: 0000-0002-0046-1160) on 3/5/2018.

About the model

The model depicted in this document considers carbon allocation with a process based approach. It was originally described by Arora & Boer (2005).

Space Scale

regional

state_variables
Name Description Unit
\(C_{leaf}\) Amount of carbon for the leaf \(kgC\cdot m^{-2}\)
\(C_{stem}\) Amount of carbon for the stem \(kgC\cdot m^{-2}\)
\(C_{roots}\) Amount of carbon for the root \(kgC\cdot m^{-2}\)
additional_variables
Name Description Unit
\(k_{leaf}\) -
\(cn_{leaf}\) -
\(k_{stem}\) -
\(cn_{stem}\) -
\(k_{roots}\) -
\(cn_{roots}\) -
\(gt\) Function of Q_10 and temperature -
\(teta\) -
photosynthetic_parameters
Name Description Unit
\(t\) time step \(year\)
\(GPP\) Carbon gain via photosynthesis (Gross Primary Productivity, GPP) \(KgC\cdot m^{−2}\cdot yr^{−1}\)
\(NPP\) Net primary Productivity (NPP) \(KgC\cdot m^{−2}\cdot yr^{−1}\)
respiration
Name Description Expression
\(R_{leaf}\) Leaf respiration \(R_{leaf}=\frac{C_{leaf}\cdot gt\cdot k_{leaf}\cdot teta}{cn_{leaf}}\)
\(R_{stem}\) Stem respiration \(R_{stem}=\frac{C_{stem}\cdot gt\cdot k_{stem}\cdot teta}{cn_{stem}}\)
\(R_{roots}\) Roots respiration \(R_{roots}=\frac{C_{roots}\cdot gt\cdot k_{roots}\cdot teta}{cn_{roots}}\)
partitioning
Name Description Expression Unit
\(Allo_{fact stem}\) - -
\(Allo_{fact roots}\) - -
\(Allo_{fact leaf}\) \(Allo_{fact leaf}=- Allo_{fact roots} - Allo_{fact stem} + 1\) -
\(a_{L}\) Parameter introduced by the author of this entry in order to summarize equations on the paper. \(a_{L}=\begin{cases} Allo_{fact leaf}\cdot GPP - R_{leaf} &\text{for}\: NPP < 0\\Allo_{fact leaf}\cdot NPP &\text{for}\: NPP > 0\end{cases}\) -
\(a_{S}\) Parameter introduced by the author of this entry in order to summarize equations on the paper. \(a_{S}=\begin{cases} Allo_{fact stem}\cdot GPP - R_{stem} &\text{for}\: NPP < 0\\Allo_{fact stem}\cdot NPP &\text{for}\: NPP > 0\end{cases}\) -
\(a_{R}\) Parameter introduced by the author of this entry in order to summarize equations on the paper. \(a_{R}=\begin{cases} Allo_{fact roots}\cdot GPP - R_{roots} &\text{for}\: NPP < 0\\Allo_{fact roots}\cdot NPP &\text{for}\: NPP > 0\end{cases}\) -
litter
Name Description Unit
\(Y_{leaf}\) Litter production \(year\)
\(Y_{stem}\) Litter production \(year\)
\(Y_{roots}\) Litter production \(year\)
components
Name Description Expression
\(x\) vector of states for vegetation \(x=\left[\begin{matrix}C_{leaf}\\C_{stem}\\C_{roots}\end{matrix}\right]\)
\(u\) Vector of functions of photosynthetic inputs \(u=\left[\begin{matrix}a_{L}\\a_{S}\\a_{R}\end{matrix}\right]\)
\(A\) matrix of cycling rates \(A=\left[\begin{matrix}-\frac{1}{Y_{leaf}} & 0 & 0\\0 & -\frac{1}{Y_{stem}} & 0\\0 & 0 & -\frac{1}{Y_{roots}}\end{matrix}\right]\)
\(f_{v}\) the righthandside of the ode \(f_{v}=A x + u\)

Pool model representation


Figure 1
Figure 1: Pool model representation

Input fluxes

\(C_{leaf}: \begin{cases} -\frac{C_{leaf}\cdot gt\cdot k_{leaf}\cdot teta}{cn_{leaf}} + GPP\cdot\left(- Allo_{fact roots} - Allo_{fact stem} + 1\right) &\text{for}\: NPP < 0\\NPP\cdot\left(- Allo_{fact roots} - Allo_{fact stem} + 1\right) &\text{for}\: NPP > 0\end{cases}\)
\(C_{stem}: \begin{cases} Allo_{fact stem}\cdot GPP -\frac{C_{stem}\cdot gt\cdot k_{stem}\cdot teta}{cn_{stem}} &\text{for}\: NPP < 0\\Allo_{fact stem}\cdot NPP &\text{for}\: NPP > 0\end{cases}\)
\(C_{roots}: \begin{cases} Allo_{fact roots}\cdot GPP -\frac{C_{roots}\cdot gt\cdot k_{roots}\cdot teta}{cn_{roots}} &\text{for}\: NPP < 0\\Allo_{fact roots}\cdot NPP &\text{for}\: NPP > 0\end{cases}\)

Output fluxes

\(C_{leaf}: \frac{C_{leaf}}{Y_{leaf}}\)
\(C_{stem}: \frac{C_{stem}}{Y_{stem}}\)
\(C_{roots}: \frac{C_{roots}}{Y_{roots}}\)

References

Arora, V. K., & Boer, G. J. (2005). A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology, 11(1), 39–59. http://doi.org/10.1111/j.1365-2486.2004.00890.x