General Overview


Logo

This report is the result of the use of the python package bgc_md, as means to translate published models to a common language. The underlying yaml file was created by Verónika Ceballos-Núñez (Orcid ID: 0000-0002-0046-1160) on 26/1/2016.

About the model

The model depicted in this document considers carbon allocation with a process based approach. It was originally described by Foley et al. (1996).

Space Scale

global

Available parameter values

Information on given parameter sets
Abbreviation Source
Tropical evergreen trees Foley et al. (1996)
state_variables
Name Description
\(C_{il}\) Carbon in leaves of plant functional type (PFT) i
\(C_{is}\) Carbon in transport tissue (mainly stems) of PFT\(_{i}\)
\(C_{ir}\) Carbon in fine roots of PFT\(_{i}\)
photosynthesis_and_respiration
Name Description Expression Unit
\(t\) time step - \(s\)
\(Q_{p}\) Flux density of photosynthetically active radiation absorbed by the leaf - \(Einstein\cdot m^{-2}\cdot s^{-1}\)
\(\alpha_{3}\) Intrinsic quantum efficiency for CO_2 uptake in C_3 plants - \(mol CO_2\cdot Einstein^{-1}\)
\(\alpha_{4}\) - -
\(O_{2}\) Atmospheric [O_2] (value: 0.209) - \(mol\cdot mol^{-1}\)
\(\tau\) Ratio of kinetic parameters describing the partitioning of enzyme activity to carboxylase or oxygenase function - -
\(\Gamma\) Gamma^* is the compensation point for gross photosynthesis \(\Gamma=\frac{O_{2}}{2\cdot\tau}\) \(mol\cdot mol^{-1}\)
\(C_{i}\) [CO_2] in the intercellular air spaces of the leaf - \(mol\cdot mol^{-1}\)
\(J_{e}\) Light-limited rate of photoynthesis \(J_{e}=\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\Gamma\right)}{C_{i} + 2\cdot\Gamma}\) -
\(J_{e4}\) Rubisco-limited rate of photosynthesis (C4 plants) \(J_{e4}=V_{m}\) -
\(V_{m}\) Maximum capacity of Rubisco to perform the carboxylase fuction - \(mol CO_2\cdot m^{-2}\cdot s^{-1}\)
\(K_{c}\) Michaelis-Menten coefficient for CO\(_{2}\) - \(mol\cdot mol^{-1}\)
\(K_{o}\) Michaelis-Menten coefficient for O\(_{2}\) - \(mol\cdot mol^{-1}\)
\(J_{c}\) Rubisco-limited rate of photosynthesis \(J_{c}=\frac{V_{m}\cdot\left(C_{i} -\Gamma\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\) -
\(k\) - -
\(J_{c4}\) CO\(_{2}\)-limited rate of photosynthesis at low [CO\(_{2}\)] (C4 plants) \(J_{c4}=C_{i}\cdot k\) -
\(T\) Rate of triose phosphate utilization \(T=0.121951219512195\cdot V_{m}\) -
\(J_{p}\) see section 6a - -
\(J_{s}\) Triose phosphate-limited rate of photosynthesis \(J_{s}=3\cdot T\cdot\left(1 -\frac{\Gamma}{C_{i}}\right) +\frac{\Gamma\cdot J_{p}}{C_{i}}\) -
\(J_{i}\) Light-limited rate of photosynthesis (C4 plants) \(J_{i}=Q_{p}\cdot\alpha_{4}\) -
\(A_{g}\) Gross photosynthesis rate per unit of area \(A_{g}=\min\left(J_{c}, J_{e}, J_{s}\right)\) \(mol CO_2\cdot m^{-2}\cdot s^{-2}\)
\(\gamma\) Leaf respiration cost of Rubisco acivity - -
\(B_{stem}\) Maintenance respiration coefficient defined at 15°C - -
\(B_{root}\) Maintenance respiration coefficient defined at 15°C - -
\(\lambda_{sapwood}\) Sapwood fraction of the total stem biomass (estimated from an assumed sap velocity and the maximum rate of transpiration experienced during the previous year) - -
\(E_{0}\) Temperature sensitivity factor - -
\(T_{0}\) Set to absolute zero (-273.16 °C) - -
\(T_{stem}\) Stem temperature - \(°C\)
\(T_{soil}\) Temperature of the soil in the rooting zone - \(°C\)
\(fT_{stem}\) f(T) is the Arrenhius temperature function \(fT_{stem}=e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{stem}} +\frac{1}{15 - T_{0}}\right)}\) -
\(fT_{soil}\) f(T) is the Arrenhius temperature function \(fT_{soil}=e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{soil}} +\frac{1}{15 - T_{0}}\right)}\) -
\(R_{leaf}\) Leaf maintenance respiration \(R_{leaf}=V_{m}\cdot\gamma\) \(mol CO_2\cdot m^{-2}\cdot s^{-1}\)
\(R_{stem}\) Stem maintenance respiration \(R_{stem}=B_{stem}\cdot C_{is}\cdot fT_{stem}\cdot\lambda_{sapwood}\) -
\(R_{root}\) Root maintenance respiration \(R_{root}=B_{root}\cdot C_{ir}\cdot fT_{soil}\) -
\(A_{n}\) Net leaf assimilation rate \(A_{n}=A_{g} - R_{leaf}\) \(mol CO_2\cdot m^{-2}\cdot s^{-1}\)
\(GPP - i\) Gross primary productivity \(GPP_{i}=A_{g}\cdot t\) -
\(\eta\) Fraction of carbon lost in the construction of net plant material because of growth respiration (value 0.33) - -
\(NPP_{i}\) Net Primary Production for PFT\(_{i}\) \(NPP_{i}=t\cdot\left(1 -\eta\right)\cdot\left(A_{g} - R_{leaf} - R_{root} - R_{stem}\right)\) -
allocation_coefficients
Name Description
\(a_{il}\) Fraction of annual NPP allocated to leaves for PFT\(_{i}\)
\(a_{is}\) Fraction of annual NPP allocated to stem for PFT\(_{i}\)
\(a_{ir}\) Fraction of annual NPP allocated to roots for PFT\(_{i}\)
cycling_rates
Name Description Unit
\(\tau_{il}\) Residence time of carbon in leaves for PFT\(_{i}\) -
\(\tau_{is}\) Residence time of carbon in stem for PFT\(_{i}\) -
\(\tau_{ir}\) Residence time of carbon in roots for PFT\(_{i}\) -
components
Name Description Expression
\(x\) vector of states for vegetation \(x=\left[\begin{matrix}C_{il}\\C_{is}\\C_{ir}\end{matrix}\right]\)
\(u\) scalar function of photosynthetic inputs \(u=NPP_{i}\)
\(b\) vector of partitioning coefficients of photosynthetically fixed carbon \(b=\left[\begin{matrix}a_{il}\\a_{is}\\a_{ir}\end{matrix}\right]\)
\(A\) matrix of turnover (cycling) rates \(A=\left[\begin{matrix}-\frac{1}{\tau_{il}} & 0 & 0\\0 & -\frac{1}{\tau_{is}} & 0\\0 & 0 & -\frac{1}{\tau_{ir}}\end{matrix}\right]\)
\(f_{v}\) the righthandside of the ode \(f_{v}=u b + A x\)

Pool model representation


Figure 1
Figure 1: Pool model representation

Input fluxes

\(C_{il}: a_{il}\cdot\left(1 -\eta\right)\cdot\left(\begin{cases} t\cdot\left(- B_{root}\cdot C_{ir}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{soil}} +\frac{1}{15 - T_{0}}\right)} - B_{stem}\cdot C_{is}\cdot\lambda_{sapwood}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{stem}} +\frac{1}{15 - T_{0}}\right)} +\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}} - V_{m}\cdot\gamma\right) &\text{for}\:\left(\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq}\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right)\vee\left(\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq}\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right)\\t\cdot\left(- B_{root}\cdot C_{ir}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{soil}} +\frac{1}{15 - T_{0}}\right)} - B_{stem}\cdot C_{is}\cdot\lambda_{sapwood}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{stem}} +\frac{1}{15 - T_{0}}\right)} - V_{m}\cdot\gamma +\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\right) &\text{for}\:\left(\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq}\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\right)\vee\left(\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right)\vee\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\\t\cdot\left(- B_{root}\cdot C_{ir}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{soil}} +\frac{1}{15 - T_{0}}\right)} - B_{stem}\cdot C_{is}\cdot\lambda_{sapwood}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{stem}} +\frac{1}{15 - T_{0}}\right)} - V_{m}\cdot\gamma + 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right) &\text{otherwise}\end{cases}\right)\)
\(C_{is}: a_{is}\cdot\left(1 -\eta\right)\cdot\left(\begin{cases} t\cdot\left(- B_{root}\cdot C_{ir}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{soil}} +\frac{1}{15 - T_{0}}\right)} - B_{stem}\cdot C_{is}\cdot\lambda_{sapwood}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{stem}} +\frac{1}{15 - T_{0}}\right)} +\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}} - V_{m}\cdot\gamma\right) &\text{for}\:\left(\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq}\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right)\vee\left(\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq}\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right)\\t\cdot\left(- B_{root}\cdot C_{ir}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{soil}} +\frac{1}{15 - T_{0}}\right)} - B_{stem}\cdot C_{is}\cdot\lambda_{sapwood}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{stem}} +\frac{1}{15 - T_{0}}\right)} - V_{m}\cdot\gamma +\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\right) &\text{for}\:\left(\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq}\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\right)\vee\left(\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right)\vee\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\\t\cdot\left(- B_{root}\cdot C_{ir}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{soil}} +\frac{1}{15 - T_{0}}\right)} - B_{stem}\cdot C_{is}\cdot\lambda_{sapwood}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{stem}} +\frac{1}{15 - T_{0}}\right)} - V_{m}\cdot\gamma + 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right) &\text{otherwise}\end{cases}\right)\)
\(C_{ir}: a_{ir}\cdot\left(1 -\eta\right)\cdot\left(\begin{cases} t\cdot\left(- B_{root}\cdot C_{ir}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{soil}} +\frac{1}{15 - T_{0}}\right)} - B_{stem}\cdot C_{is}\cdot\lambda_{sapwood}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{stem}} +\frac{1}{15 - T_{0}}\right)} +\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}} - V_{m}\cdot\gamma\right) &\text{for}\:\left(\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq}\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right)\vee\left(\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq}\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right)\\t\cdot\left(- B_{root}\cdot C_{ir}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{soil}} +\frac{1}{15 - T_{0}}\right)} - B_{stem}\cdot C_{is}\cdot\lambda_{sapwood}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{stem}} +\frac{1}{15 - T_{0}}\right)} - V_{m}\cdot\gamma +\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\right) &\text{for}\:\left(\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq}\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}\right)\vee\left(\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\wedge\frac{Q_{p}\cdot\alpha_{3}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} +\frac{O_{2}}{\tau}}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right)\vee\frac{V_{m}\cdot\left(C_{i} -\frac{O_{2}}{2\cdot\tau}\right)}{C_{i} + K_{c}\cdot\left(1 +\frac{O_{2}}{K_{o}}\right)}{\leq} 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\\t\cdot\left(- B_{root}\cdot C_{ir}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{soil}} +\frac{1}{15 - T_{0}}\right)} - B_{stem}\cdot C_{is}\cdot\lambda_{sapwood}\cdot e^{E_{0}\cdot\left(-\frac{1}{- T_{0} + T_{stem}} +\frac{1}{15 - T_{0}}\right)} - V_{m}\cdot\gamma + 0.365853658536585\cdot V_{m}\cdot\left(1 -\frac{O_{2}}{2\cdot C_{i}\cdot\tau}\right) +\frac{J_{p}\cdot O_{2}}{2\cdot C_{i}\cdot\tau}\right) &\text{otherwise}\end{cases}\right)\)

Output fluxes

\(C_{il}: \frac{C_{il}}{\tau_{il}}\)
\(C_{is}: \frac{C_{is}}{\tau_{is}}\)
\(C_{ir}: \frac{C_{ir}}{\tau_{ir}}\)

References

Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S., & Haxeltine, A. (1996). An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10(4), 603–628. http://doi.org/10.1029/96gb02692