General Overview


Logo

This report is the result of the use of the python package bgc_md, as means to translate published models to a common language. The underlying yaml file was created by Verónika Ceballos-Núñez (Orcid ID: 0000-0002-0046-1160) on 16/3/2016.

About the model

The model depicted in this document considers carbon allocation with a process based approach. It was originally described by Murty & McMurtrie (2000).

Space Scale

global

state_variables
Name Description Unit
\(C_{f}\) Foliar carbon mass \(kgC\cdot m^{-2}\)
\(C_{r}\) Root carbon \(kgC\cdot m^{-2}\)
\(C_{w}\) Carbon in woody tissue \(kgC\cdot m^{-2}\)
additional_variables
Name Description Expression Unit
\(C_{sw}\) Sapwood carbon content \(C_{sw}=1.11\cdot C_{w}^{0.77}\) \(kgC\cdot m^{-2}\)
\(N_{f}\) Nitrogen content of foliage - \(kgN\cdot m^{-2}\)
\(N_{r}\) Nitrogen content of fine roots - -
\(n_{f}\) Foliar N:C ratio - -
\(n_{crit}\) Foliar N:C ratio below which production is N-limited - -
\(T_{a}\) Mean air temperature - -
\(Q_{10}\) - -
\(Q_{010}\) - -
photosynthetic_parameters
Name Description Expression Unit
\(I_{0}\) Incident PAR - \(GJ\cdot m^{-2}\)
\(\sigma\) Leaf area per unit carbon - \(m^{2}\cdot kgC^{-1}\)
\(k\) Light extinction coefficient - \(kgC\cdot m^{-2}\)
\(APAR\) Absorbed photosynthetically active radiation \(APAR=I_{0}\cdot\left(1 - e^{- C_{f}\cdot k\cdot\sigma}\right)\) -
\(E_{nf}\) Function that represents the dependence of NPP on foliar N:C ratio (n_f) \(E_{nf}=\begin{cases}\frac{\left(n_{crit} + 0.017\right)\cdot\left(1.84\cdot n_{f} - 0.01\right)}{\left(1.84\cdot n_{crit} - 0.01\right)\cdot\left(n_{f} + 0.017\right)} &\text{for}\: n_{crit} > n_{f}\\1 &\text{for}\: n_{crit} < n_{f}\end{cases}\) -
\(\epsilon_{young}\) Maximum gross PAR utilization efficiency of young stands - \(gC\cdot MJ^{-1}\)
\(\epsilon_{old}\) Maximum gross PAR utilization efficiency of old stands - \(gC\cdot MJ^{-1}\)
\(\epsilon_{0}\) Maximum gross PAR utilization efficiency \(\epsilon_{0}=\begin{cases}\epsilon_{young} &\text{for}\: t{\leq} t_{1}\\\begin{cases}\epsilon_{young} -\frac{\left(-\epsilon_{old} +\epsilon_{young}\right)\cdot\left(t - t_{1}\right)}{- t_{1} + t_{2}} &\text{for}\: t > t_{1}\\\begin{cases}\epsilon_{young} -\frac{\left(-\epsilon_{old} +\epsilon_{young}\right)\cdot\left(t - t_{1}\right)}{- t_{1} + t_{2}} &\text{for}\: t < t_{2}\\\epsilon_{old} &\text{otherwise}\end{cases} &\text{otherwise}\end{cases} &\text{otherwise}\end{cases}\) \(gC\cdot MJ^{-1}\)
\(GPP\) Gross primary production \(GPP=APAR\cdot E_{nf}\cdot\epsilon_{0}\) -
\(NPP\) Annual net primary production \(NPP=GPP - R_{c} - R_{m}\) \(kgC\cdot m^{-2}\cdot year^{-1}\)
respiration_parameters
Name Description Expression Unit
\(R_{c}\) Total construction respiration - -
\(R_{0}\) Respiration rate per unit nitrogen content corresponding to a temperature of 0°C - \(kgC\cdot kgN^{-1}\cdot year^{-1}\)
\(R_{mf}\) Annual maintenance respiration rate of foliage (dark period only) \(R_{mf}=0.5\cdot N_{f}\cdot Q_{10}^{\frac{T_{a}}{10}}\cdot R_{0}\) -
\(R_{mr}\) Annual maintenance respiration rate of fine roots (dark period only) \(R_{mr}=N_{r}\cdot Q_{10}^{\frac{T_{a}}{10}}\cdot R_{0}\) -
\(R_{msw}\) Annual maintenance respiration rate of sapwood (dark period only) \(R_{msw}=0.00876\cdot C_{sw}\cdot Q_{010}^{\frac{T_{a}}{10}}\) -
\(R_{m}\) Total maintenance respiration \(R_{m}=R_{mf} + R_{mr} + R_{msw}\) -
allocation_coefficients
Name Description Expression
\(a_{f}\) Allocation fraction to foliar biomass -
\(a_{r}\) Allocation fraction to roots biomass -
\(a_{w}\) Allocation fraction to wood (in stem, branches and large structurl roots) biomass \(a_{w}=- a_{f} - a_{r} + 1\)
cycling_rates
Name Description Unit
\(\gamma_{f}\) Foliage senescence rate \(yr^{-1}\)
\(\gamma_{r}\) Roots senescence rate \(yr^{-1}\)
\(\gamma_{w}\) Wood senescence rate \(yr^{-1}\)
components
Name Description Expression
\(x\) vector of states for vegetation \(x=\left[\begin{matrix}C_{f}\\C_{r}\\C_{w}\end{matrix}\right]\)
\(u\) scalar function of photosynthetic inputs \(u=NPP\)
\(b\) vector of partitioning coefficients of photosynthetically fixed carbon \(b=\left[\begin{matrix}a_{f}\\a_{r}\\a_{w}\end{matrix}\right]\)
\(A\) matrix of senescence (cycling) rates \(A=\left[\begin{matrix}-\gamma_{f} & 0 & 0\\0 & -\gamma_{r} & 0\\0 & 0 & -\gamma_{w}\end{matrix}\right]\)
\(f_{v}\) the righthandside of the ode \(f_{v}=u b + A x\)

Pool model representation


Figure 1
Figure 1: Pool model representation

Input fluxes

\(C_{f}: a_{f}\cdot\left(- 0.0097236\cdot C_{w}^{0.77}\cdot Q_{010}^{\frac{T_{a}}{10}} + I_{0}\cdot\left(1 - e^{- C_{f}\cdot k\cdot\sigma}\right)\cdot\left(\begin{cases}\epsilon_{young} &\text{for}\: t{\leq} t_{1}\\\begin{cases}\epsilon_{young} -\frac{\left(-\epsilon_{old} +\epsilon_{young}\right)\cdot\left(t - t_{1}\right)}{- t_{1} + t_{2}} &\text{for}\: t > t_{1}\\\begin{cases}\epsilon_{young} -\frac{\left(-\epsilon_{old} +\epsilon_{young}\right)\cdot\left(t - t_{1}\right)}{- t_{1} + t_{2}} &\text{for}\: t < t_{2}\\\epsilon_{old} &\text{otherwise}\end{cases} &\text{otherwise}\end{cases} &\text{otherwise}\end{cases}\right)\cdot\left(\begin{cases}\frac{\left(n_{crit} + 0.017\right)\cdot\left(1.84\cdot n_{f} - 0.01\right)}{\left(1.84\cdot n_{crit} - 0.01\right)\cdot\left(n_{f} + 0.017\right)} &\text{for}\: n_{crit} > n_{f}\\1 &\text{for}\: n_{crit} < n_{f}\end{cases}\right) - 0.5\cdot N_{f}\cdot Q_{10}^{\frac{T_{a}}{10}}\cdot R_{0} - N_{r}\cdot Q_{10}^{\frac{T_{a}}{10}}\cdot R_{0} - R_{c}\right)\)
\(C_{r}: a_{r}\cdot\left(- 0.0097236\cdot C_{w}^{0.77}\cdot Q_{010}^{\frac{T_{a}}{10}} + I_{0}\cdot\left(1 - e^{- C_{f}\cdot k\cdot\sigma}\right)\cdot\left(\begin{cases}\epsilon_{young} &\text{for}\: t{\leq} t_{1}\\\begin{cases}\epsilon_{young} -\frac{\left(-\epsilon_{old} +\epsilon_{young}\right)\cdot\left(t - t_{1}\right)}{- t_{1} + t_{2}} &\text{for}\: t > t_{1}\\\begin{cases}\epsilon_{young} -\frac{\left(-\epsilon_{old} +\epsilon_{young}\right)\cdot\left(t - t_{1}\right)}{- t_{1} + t_{2}} &\text{for}\: t < t_{2}\\\epsilon_{old} &\text{otherwise}\end{cases} &\text{otherwise}\end{cases} &\text{otherwise}\end{cases}\right)\cdot\left(\begin{cases}\frac{\left(n_{crit} + 0.017\right)\cdot\left(1.84\cdot n_{f} - 0.01\right)}{\left(1.84\cdot n_{crit} - 0.01\right)\cdot\left(n_{f} + 0.017\right)} &\text{for}\: n_{crit} > n_{f}\\1 &\text{for}\: n_{crit} < n_{f}\end{cases}\right) - 0.5\cdot N_{f}\cdot Q_{10}^{\frac{T_{a}}{10}}\cdot R_{0} - N_{r}\cdot Q_{10}^{\frac{T_{a}}{10}}\cdot R_{0} - R_{c}\right)\)
\(C_{w}: \left(- a_{f} - a_{r} + 1\right)\cdot\left(- 0.0097236\cdot C_{w}^{0.77}\cdot Q_{010}^{\frac{T_{a}}{10}} + I_{0}\cdot\left(1 - e^{- C_{f}\cdot k\cdot\sigma}\right)\cdot\left(\begin{cases}\epsilon_{young} &\text{for}\: t{\leq} t_{1}\\\begin{cases}\epsilon_{young} -\frac{\left(-\epsilon_{old} +\epsilon_{young}\right)\cdot\left(t - t_{1}\right)}{- t_{1} + t_{2}} &\text{for}\: t > t_{1}\\\begin{cases}\epsilon_{young} -\frac{\left(-\epsilon_{old} +\epsilon_{young}\right)\cdot\left(t - t_{1}\right)}{- t_{1} + t_{2}} &\text{for}\: t < t_{2}\\\epsilon_{old} &\text{otherwise}\end{cases} &\text{otherwise}\end{cases} &\text{otherwise}\end{cases}\right)\cdot\left(\begin{cases}\frac{\left(n_{crit} + 0.017\right)\cdot\left(1.84\cdot n_{f} - 0.01\right)}{\left(1.84\cdot n_{crit} - 0.01\right)\cdot\left(n_{f} + 0.017\right)} &\text{for}\: n_{crit} > n_{f}\\1 &\text{for}\: n_{crit} < n_{f}\end{cases}\right) - 0.5\cdot N_{f}\cdot Q_{10}^{\frac{T_{a}}{10}}\cdot R_{0} - N_{r}\cdot Q_{10}^{\frac{T_{a}}{10}}\cdot R_{0} - R_{c}\right)\)

Output fluxes

\(C_{f}: C_{f}\cdot\gamma_{f}\)
\(C_{r}: C_{r}\cdot\gamma_{r}\)
\(C_{w}: C_{w}\cdot\gamma_{w}\)

References

Murty, D., & McMurtrie, R. E. (2000). The decline of forest productivity as stands age: A model-based method for analysing causes for the decline. Ecological Modelling, 134(2-3), 185–205. http://doi.org/10.1016/s0304-3800(00)00345-8