This report is the result of the use of the python package bgc_md, as means to translate published models to a common language. The underlying yaml file was created by Verónika Ceballos-Núñez (Orcid ID: 0000-0002-0046-1160) on 24/3/2016.
The model depicted in this document considers carbon allocation with a process based approach. It was originally described by Luo, Weng, & Yang (2012).
global
Abbreviation | Description |
---|---|
set1 | Original parameters of the publication. Parameter value of GPP corresponds to an annual average |
Abbreviation | Description |
---|---|
_0 | original dataset of the publication. Parameter value of GPP corresponds to an annual average |
Name | Description |
---|---|
\(C_{f}\) | Carbon in foliage |
\(C_{r}\) | Carbon in roots |
\(C_{w}\) | Carbon in woody tissue |
Name | Description | Expression | Unit |
---|---|---|---|
\(t\) | - | \(day\) | |
\(GPP\) | Photosynthetic rate (Carbon input) at time t | - | \(gC\cdot day^{-1}\) |
\(T\) | Temperature | - | - |
\(Q_{10}\) | Temperature quotient that describes a change in decomposition rate for evey 10°C difference in temperature | - | - |
\(W\) | Volumetric soil moisture | - | - |
\(f_{W}\) | Function of W | \(f_{W}=\min\left(1, 0.5\cdot W\right)\) | - |
\(f_{T}\) | Function of T | \(f_{T}=Q_{10}^{\frac{T}{10} - 1}\) | - |
\(\epsilon_{t}\) | Environmental scalar | \(\epsilon_{t}=f_{T}\cdot f_{W}\) | \(km^2\) |
Name | Description |
---|---|
\(\eta_{f}\) | Fixed partitioning ratio (fraction) of available carbon allocated to foliage |
\(\eta_{r}\) | Fixed partitioning ratio (fraction) of available carbon allocated to roots |
\(\eta_{w}\) | Fixed partitioning ratio (fraction) of available carbon allocated to wood |
Name | Description | Unit |
---|---|---|
\(\gamma_{f}\) | Foliage turnover rate | - |
\(\gamma_{r}\) | Roots turnover rate | - |
\(\gamma_{w}\) | Wood turnover rate | - |
Name | Description | Expression |
---|---|---|
\(x\) | vector of states for vegetation | \(x=\left[\begin{matrix}C_{f}\\C_{w}\\C_{r}\end{matrix}\right]\) |
\(u\) | scalar function of photosynthetic inputs | \(u=GPP\cdot\epsilon_{t}\) |
\(b\) | vector of partitioning coefficients of photosynthetically fixed carbon | \(b=\left[\begin{matrix}\eta_{f}\\\eta_{w}\\\eta_{r}\end{matrix}\right]\) |
\(A\) | matrix of turnover (cycling) rates | \(A=\left[\begin{matrix}-\gamma_{f} & 0 & 0\\0 & -\gamma_{w} & 0\\0 & 0 & -\gamma_{r}\end{matrix}\right]\) |
\(f_{v}\) | the righthandside of the ode | \(f_{v}=u b + A x\) |
\(C_{f}: GPP\cdot Q_{10}^{\frac{T}{10} - 1}\cdot\eta_{f}\cdot\min\left(1, 0.5\cdot W\right)\)
\(C_{w}: GPP\cdot Q_{10}^{\frac{T}{10} - 1}\cdot\eta_{w}\cdot\min\left(1, 0.5\cdot W\right)\)
\(C_{r}: GPP\cdot Q_{10}^{\frac{T}{10} - 1}\cdot\eta_{r}\cdot\min\left(1, 0.5\cdot W\right)\)
\(C_{f}: C_{f}\cdot\gamma_{f}\)
\(C_{w}: C_{w}\cdot\gamma_{w}\)
\(C_{r}: C_{r}\cdot\gamma_{r}\)
\(C_f = \frac{GPP\cdot Q_{10}^{\frac{T}{10} - 1}\cdot\eta_{f}\cdot\min\left(1.0, 0.5\cdot W\right)}{\gamma_{f}}\)
\(C_w = \frac{GPP\cdot Q_{10}^{\frac{T}{10} - 1}\cdot\eta_{w}\cdot\min\left(1.0, 0.5\cdot W\right)}{\gamma_{w}}\)
\(C_r = \frac{GPP\cdot Q_{10}^{\frac{T}{10} - 1}\cdot\eta_{r}\cdot\min\left(1.0, 0.5\cdot W\right)}{\gamma_{r}}\)
Luo, Y., Weng, E., & Yang, Y. (2012). Ecosystem ecology, 219–229.