General Overview


Logo

This report is the result of the use of the python package bgc_md, as means to translate published models to a common language. The underlying yaml file was created by Verónika Ceballos-Núñez (Orcid ID: 0000-0002-0046-1160) on 15/3/2016.

About the model

The model depicted in this document considers carbon allocation with a process based approach. It was originally described by DeAngelis, Ju, Liu, Bryant, & Gourley (2011).

Space Scale

global

Available parameter values

Information on given parameter sets
Abbreviation Source
Original dataset of the publication @DeAngelis2011TheoreticalEcology
state_variables
Name Description Unit
\(C_{f}\) Foliage carbon content per unit ground area at equilibrium \(g\cdot m^{-2}\)
\(C_{r}\) Fine root carbon \(g\cdot m^{-2}\)
\(C_{w}\) Carbon in woody tissue \(g\cdot m^{-2}\)
\(N_{f}\) Nitrogen in foliage \(g\cdot m^{-2}\)
\(N_{pore}\) Soil pore water nutrient pool \(gN\cdot g^{-1}water\)
additional_variables
Name Description Expression Unit
\(F_{i}\) Herbivore functional response - \(gN\cdot m^{-2}\cdot day^{-1}\)
\(N_{r}\) Nitrogen in roots - -
\(v_{f}\) N:C ratio in foliage \(v_{f}=\frac{N_{f}}{C_{f}}\) -
\(v_{r}\) N:C ratio in fine roots \(v_{r}=\frac{N_{r}}{C_{r}}\) -
\(N_{w}\) Nitrogen in wood - -
\(v_{w}\) N:C ratio in wood \(v_{w}=\frac{N_{w}}{C_{w}}\) -
\(v_{m}\) N:C ratio for reproductive propagules - -
photosynthetic_parameters
Name Description Expression Unit
\(G_{0}\) Maximum possible primary production, assuming all light is captured and photosynthesizing material (foliage) is operating optimally. - -
\(b_{f}\) Converts carbon per square meter to LAI - -
\(k_{f}\) Foliage light-extinction (Beer-Lambert law) coefficient - -
\(v_{0}\) Half-saturation constant for the effect of foliar nitrogen concentration on primary production - -
\(G\) Net carbon production or growth per unit time \(G=\frac{G_{0}\cdot v_{f}\cdot\left(1 - e^{- C_{f}\cdot b_{f}\cdot k_{f}}\right)}{v_{0} + v_{f}}\) \(gC\cdot m^{-2}\cdot day^{-1}\)
nutrient_uptake
Name Description Expression Unit
\(g_{N}\) Maximum possible nutrient uptake rate - -
\(k_{N}\) Half-saturation constant for uptake of soil porewater N - -
\(k_{r}\) Coefficient analogous to k\(_{f}\) - -
\(b_{r}\) Coefficient of fine root length per unit C - -
\(U\) Nutrient uptake rate of plant available nutrient. Saturated response of uptake to soil porewater concentration is assumed \(U=\frac{N_{pore}\cdot g_{N}\cdot\left(1 - e^{- C_{r}\cdot b_{r}\cdot k_{r}}\right)}{N_{pore} + k_{N}}\) \(gN\cdot m^{-2}\cdot day^{-1}\)
allocation_coefficients
Name Description Expression
\(s_{f}\) Allocation ratio of wood to foliage -
\(s_{r}\) Allocation ratio of wood to fine roots -
\(\eta_{f}\) Allocation fraction to foliar biomass -
\(\eta_{r}\) Allocation fraction to roots biomass -
\(\eta_{w}\) Allocation fraction to wood (in stem, branches and large structurl roots) biomass \(\eta_{w}=\eta_{f}\cdot s_{f} +\eta_{r}\cdot s_{r}\)
\(\eta_{m}\) Allocation fraction to reproduction -
\(\eta_{d}\) Allocation fraction to plant defense \(\eta_{d}=-\eta_{f} -\eta_{m} -\eta_{r} -\eta_{w} + 1\)
cycling_rates
Name Description Unit
\(\gamma_{f}\) Foliage senescence rate \(day^{-1}\)
\(\gamma_{r}\) Roots senescence rate \(day^{-1}\)
\(\gamma_{w}\) Wood senescence rate \(day^{-1}\)
components
Name Description Expression
\(x\) vector of states for vegetation \(x=\left[\begin{matrix}C_{f}\\C_{r}\\C_{w}\\N_{f}\end{matrix}\right]\)
\(u\) scalar function of photosynthetic inputs \(u=G\)
\(b\) vector of partitioning coefficients of photosynthetically fixed carbon \(b=\left[\begin{matrix}\eta_{f}\\\eta_{r}\\\eta_{w}\\-\eta_{m}\cdot v_{m} -\eta_{r}\cdot v_{r} -\eta_{w}\cdot v_{w} +\frac{U}{G}\end{matrix}\right]\)
\(A\) matrix of senescence (cycling) rates \(A=\left[\begin{matrix}-\frac{F_{i}}{N_{f}} -\gamma_{f} & 0 & 0 & 0\\0 & -\gamma_{r} & 0 & 0\\0 & 0 & -\gamma_{w} & 0\\0 & 0 & 0 & -\frac{F_{i}}{N_{f}} -\gamma_{f}\end{matrix}\right]\)
\(f_{v}\) the righthandside of the ode \(f_{v}=u b + A x\)

Pool model representation


Figure 1
Figure 1: Pool model representation

Input fluxes

\(C_{f}: \frac{G_{0}\cdot N_{f}\cdot\eta_{f}\cdot\left(1 - e^{- C_{f}\cdot b_{f}\cdot k_{f}}\right)}{C_{f}\cdot\left(v_{0} +\frac{N_{f}}{C_{f}}\right)}\)
\(C_{r}: \frac{G_{0}\cdot N_{f}\cdot\eta_{r}\cdot\left(1 - e^{- C_{f}\cdot b_{f}\cdot k_{f}}\right)}{C_{f}\cdot\left(v_{0} +\frac{N_{f}}{C_{f}}\right)}\)
\(C_{w}: \frac{G_{0}\cdot N_{f}\cdot\left(1 - e^{- C_{f}\cdot b_{f}\cdot k_{f}}\right)\cdot\left(\eta_{f}\cdot s_{f} +\eta_{r}\cdot s_{r}\right)}{C_{f}\cdot\left(v_{0} +\frac{N_{f}}{C_{f}}\right)}\)
\(N_{f}: \frac{G_{0}\cdot N_{f}\cdot\left(1 - e^{- C_{f}\cdot b_{f}\cdot k_{f}}\right)\cdot\left(\frac{C_{f}\cdot N_{pore}\cdot g_{N}\cdot\left(1 - e^{- C_{r}\cdot b_{r}\cdot k_{r}}\right)\cdot\left(v_{0} +\frac{N_{f}}{C_{f}}\right)}{G_{0}\cdot N_{f}\cdot\left(1 - e^{- C_{f}\cdot b_{f}\cdot k_{f}}\right)\cdot\left(N_{pore} + k_{N}\right)} -\eta_{m}\cdot v_{m} -\frac{N_{w}\cdot\left(\eta_{f}\cdot s_{f} +\eta_{r}\cdot s_{r}\right)}{C_{w}} -\frac{N_{r}\cdot\eta_{r}}{C_{r}}\right)}{C_{f}\cdot\left(v_{0} +\frac{N_{f}}{C_{f}}\right)}\)

Output fluxes

\(C_{f}: \frac{C_{f}\cdot\left(F_{i} + N_{f}\cdot\gamma_{f}\right)}{N_{f}}\)
\(C_{r}: C_{r}\cdot\gamma_{r}\)
\(C_{w}: C_{w}\cdot\gamma_{w}\)
\(N_{f}: F_{i} + N_{f}\cdot\gamma_{f}\)

References

DeAngelis, D. L., Ju, S., Liu, R., Bryant, J. P., & Gourley, S. A. (2011). Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability. Theoretical Ecology, 5(3), 445–456. http://doi.org/10.1007/s12080-011-0135-z