Emanuel1981, version: 1

General Overview


Logo

This report presents a general overview of the model Emanuel1981 , which is part of the Biogeochemistry Model Database BGC-MD. The underlying yaml file entry that contains all the information of the model was created by Carlos A. Sierra (Orcid ID: 0000-0003-0009-4169) on 12/9/2016. The entry was processed by the python package bgc-md to produce symbolic output.

The model was originally described by Emanuel, Killough, & Olson (1981).

Model description

State variables

state_variables
Name Description
\(x_{1}\) Non-woody tree parts
\(x_{2}\) Woody tree parts
\(x_{3}\) Ground vegetation
\(x_{4}\) Detritus/Decomposers
\(x_{5}\) Active soil carbon

Components of the compartmental system

components
Name Description Expression
\(x\) vector of state variables \(x=\left[\begin{matrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\\x_{5}\end{matrix}\right]\)
\(u\) vector of photosynthetically fixed carbon \(u=\left[\begin{matrix}I_{1}\\0\\I_{3}\\0\\0\end{matrix}\right]\)
\(B\) matrix of cycling rates \(B=\left[\begin{matrix}- F_{1} & 0 & 0 & 0 & 0\\F_{21} & - F_{2} & 0 & 0 & 0\\0 & 0 & - F_{3} & 0 & 0\\F_{41} & F_{42} & F_{43} & - F_{4} & 0\\0 & F_{52} & F_{53} & F_{54} & - F_{5}\end{matrix}\right]\)
\(f_{v}\) the righthandside of the ode \(f_{v}=B x + u\)

Pool model representation


Figure 1
Figure 1: Pool model representation

Input fluxes

\(x_{1}: I_{1}\)
\(x_{3}: I_{3}\)

Output fluxes

\(x_{1}: x_{1}\cdot\left(F_{1} - F_{21} - F_{41}\right)\)
\(x_{2}: x_{2}\cdot\left(F_{2} - F_{42} - F_{52}\right)\)
\(x_{3}: x_{3}\cdot\left(F_{3} - F_{43} - F_{53}\right)\)
\(x_{4}: x_{4}\cdot\left(F_{4} - F_{54}\right)\)
\(x_{5}: F_{5}\cdot x_{5}\)

Internal fluxes

\(x_{1} \rightarrow x_{2}: F_{21}\cdot x_{1}\)
\(x_{1} \rightarrow x_{4}: F_{41}\cdot x_{1}\)
\(x_{2} \rightarrow x_{4}: F_{42}\cdot x_{2}\)
\(x_{2} \rightarrow x_{5}: F_{52}\cdot x_{2}\)
\(x_{3} \rightarrow x_{4}: F_{43}\cdot x_{3}\)
\(x_{3} \rightarrow x_{5}: F_{53}\cdot x_{3}\)
\(x_{4} \rightarrow x_{5}: F_{54}\cdot x_{4}\)

Steady state formulas

\(x_1 = \frac{I_{1}}{F_{1}}\)

\(x_2 = \frac{F_{21}\cdot I_{1}}{F_{1}\cdot F_{2}}\)

\(x_3 = \frac{I_{3}}{F_{3}}\)

\(x_4 = \frac{1}{F_{1}\cdot F_{2}\cdot F_{3}\cdot F_{4}}\cdot\left(F_{1}\cdot F_{2}\cdot F_{43}\cdot I_{3} + F_{3}\cdot I_{1}\cdot\left(F_{2}\cdot F_{41} + F_{21}\cdot F_{42}\right)\right)\)

\(x_5 = \frac{1}{F_{1}\cdot F_{2}\cdot F_{3}\cdot F_{4}\cdot F_{5}}\cdot\left(F_{1}\cdot F_{2}\cdot I_{3}\cdot\left(F_{4}\cdot F_{53} + F_{43}\cdot F_{54}\right) + F_{3}\cdot I_{1}\cdot\left(F_{2}\cdot F_{41}\cdot F_{54} + F_{21}\cdot F_{4}\cdot F_{52} + F_{21}\cdot F_{42}\cdot F_{54}\right)\right)\)

References

Emanuel, W. R., Killough, G. G., & Olson, J. S. (1981). Modelling the circulation of carbon in the world’s terrestrial ecosystems. In B. Bolin (Ed.), Carbon cycle modelling (pp. 335–353). John Wiley and Sons.