ThreepFeedbackModel {SoilR} | R Documentation |
This function creates a model for three pools connected with feedback. It is
a wrapper for the more general function GeneralModel
.
ThreepFeedbackModel( t, ks, a21, a12, a32, a23, C0, In, xi = 1, solver = deSolve.lsoda.wrapper, pass = FALSE )
t |
A vector containing the points in time where the solution is sought. |
ks |
A vector of length 3 containing the values of the decomposition rates for pools 1, 2, and 3. |
a21 |
A scalar with the value of the transfer rate from pool 1 to pool 2. |
a12 |
A scalar with the value of the transfer rate from pool 2 to pool 1. |
a32 |
A scalar with the value of the transfer rate from pool 2 to pool 3. |
a23 |
A scalar with the value of the transfer rate from pool 3 to pool 2. |
C0 |
A vector containing the initial concentrations for the 3 pools. The length of this vector is 3 |
In |
A data.frame object specifying the amount of litter inputs by time. |
xi |
A scalar or data.frame object specifying the external (environmental and/or edaphic) effects on decomposition rates. |
solver |
A function that solves the system of ODEs. This can be
|
pass |
if TRUE forces the constructor to create the model even if it is invalid |
Sierra, C.A., M. Mueller, S.E. Trumbore. 2012. Models of soil organic matter decomposition: the SoilR package version 1.0. Geoscientific Model Development 5, 1045-1060.
There are other predefinedModels
and also more
general functions like Model
.
t_start=0 t_end=10 tn=50 timestep=(t_end-t_start)/tn t=seq(t_start,t_end,timestep) ks=c(k1=0.8,k2=0.4,k3=0.2) C0=c(C10=100,C20=150, C30=50) In = 60 Temp=rnorm(t,15,1) TempEffect=data.frame(t,fT.Daycent1(Temp)) Ex1=ThreepFeedbackModel(t=t,ks=ks,a21=0.5,a12=0.1,a32=0.2,a23=0.1,C0=C0,In=In,xi=TempEffect) Ct=getC(Ex1) Rt=getReleaseFlux(Ex1) plot( t, rowSums(Ct), type="l", ylab="Carbon stocks (arbitrary units)", xlab="Time (arbitrary units)", lwd=2, ylim=c(0,sum(Ct[51,])) ) lines(t,Ct[,1],col=2) lines(t,Ct[,2],col=4) lines(t,Ct[,3],col=3) legend( "topleft", c("Total C","C in pool 1", "C in pool 2","C in pool 3"), lty=c(1,1,1,1), col=c(1,2,4,3), lwd=c(2,1,1,1), bty="n" ) plot( t, rowSums(Rt), type="l", ylab="Carbon released (arbitrary units)", xlab="Time (arbitrary units)", lwd=2, ylim=c(0,sum(Rt[51,])) ) lines(t,Rt[,1],col=2) lines(t,Rt[,2],col=4) lines(t,Rt[,3],col=3) legend( "topleft", c("Total C release", "C release from pool 1", "C release from pool 2", "C release from pool 3"), lty=c(1,1,1,1), col=c(1,2,4,3), lwd=c(2,1,1,1), bty="n" ) Inr=data.frame(t,Random.inputs=rnorm(length(t),50,10)) plot(Inr,type="l") Ex2=ThreepFeedbackModel(t=t,ks=ks,a21=0.5,a12=0.1,a32=0.2,a23=0.1,C0=C0,In=Inr) Ctr=getC(Ex2) Rtr=getReleaseFlux(Ex2) plot( t, rowSums(Ctr), type="l", ylab="Carbon stocks (arbitrary units)", xlab="Time (arbitrary units)", lwd=2, ylim=c(0,sum(Ctr[51,])) ) lines(t,Ctr[,1],col=2) lines(t,Ctr[,2],col=4) lines(t,Ctr[,3],col=3) legend("topright",c("Total C","C in pool 1", "C in pool 2","C in pool 3"), lty=c(1,1,1,1),col=c(1,2,4,3),lwd=c(2,1,1,1),bty="n") plot(t,rowSums(Rtr),type="l",ylab="Carbon released (arbitrary units)", xlab="Time (arbitrary units)",lwd=2,ylim=c(0,sum(Rtr[51,]))) lines(t,Rtr[,1],col=2) lines(t,Rtr[,2],col=4) lines(t,Rtr[,3],col=3) legend( "topright", c("Total C release", "C release from pool 1", "C release from pool 2", "C release from pool 3" ), lty=c(1,1,1,1), col=c(1,2,4,3), lwd=c(2,1,1,1), bty="n")